3.630 \(\int \frac{x^4}{(1-x^3)^{2/3} (1+x^3)} \, dx\)

Optimal. Leaf size=139 \[ -\frac{\log \left (x^3+1\right )}{6\ 2^{2/3}}-\frac{1}{2} \log \left (-\sqrt [3]{1-x^3}-x\right )+\frac{\log \left (-\sqrt [3]{1-x^3}-\sqrt [3]{2} x\right )}{2\ 2^{2/3}}-\frac{\tan ^{-1}\left (\frac{1-\frac{2 x}{\sqrt [3]{1-x^3}}}{\sqrt{3}}\right )}{\sqrt{3}}+\frac{\tan ^{-1}\left (\frac{1-\frac{2 \sqrt [3]{2} x}{\sqrt [3]{1-x^3}}}{\sqrt{3}}\right )}{2^{2/3} \sqrt{3}} \]

[Out]

-(ArcTan[(1 - (2*x)/(1 - x^3)^(1/3))/Sqrt[3]]/Sqrt[3]) + ArcTan[(1 - (2*2^(1/3)*x)/(1 - x^3)^(1/3))/Sqrt[3]]/(
2^(2/3)*Sqrt[3]) - Log[1 + x^3]/(6*2^(2/3)) - Log[-x - (1 - x^3)^(1/3)]/2 + Log[-(2^(1/3)*x) - (1 - x^3)^(1/3)
]/(2*2^(2/3))

________________________________________________________________________________________

Rubi [A]  time = 0.103182, antiderivative size = 207, normalized size of antiderivative = 1.49, number of steps used = 14, number of rules used = 9, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.409, Rules used = {494, 481, 292, 31, 634, 618, 204, 628, 617} \[ \frac{1}{6} \log \left (\frac{x^2}{\left (1-x^3\right )^{2/3}}-\frac{x}{\sqrt [3]{1-x^3}}+1\right )-\frac{1}{3} \log \left (\frac{x}{\sqrt [3]{1-x^3}}+1\right )-\frac{\log \left (\frac{2^{2/3} x^2}{\left (1-x^3\right )^{2/3}}-\frac{\sqrt [3]{2} x}{\sqrt [3]{1-x^3}}+1\right )}{6\ 2^{2/3}}+\frac{\log \left (\frac{\sqrt [3]{2} x}{\sqrt [3]{1-x^3}}+1\right )}{3\ 2^{2/3}}-\frac{\tan ^{-1}\left (\frac{1-\frac{2 x}{\sqrt [3]{1-x^3}}}{\sqrt{3}}\right )}{\sqrt{3}}+\frac{\tan ^{-1}\left (\frac{1-\frac{2 \sqrt [3]{2} x}{\sqrt [3]{1-x^3}}}{\sqrt{3}}\right )}{2^{2/3} \sqrt{3}} \]

Antiderivative was successfully verified.

[In]

Int[x^4/((1 - x^3)^(2/3)*(1 + x^3)),x]

[Out]

-(ArcTan[(1 - (2*x)/(1 - x^3)^(1/3))/Sqrt[3]]/Sqrt[3]) + ArcTan[(1 - (2*2^(1/3)*x)/(1 - x^3)^(1/3))/Sqrt[3]]/(
2^(2/3)*Sqrt[3]) + Log[1 + x^2/(1 - x^3)^(2/3) - x/(1 - x^3)^(1/3)]/6 - Log[1 + x/(1 - x^3)^(1/3)]/3 - Log[1 +
 (2^(2/3)*x^2)/(1 - x^3)^(2/3) - (2^(1/3)*x)/(1 - x^3)^(1/3)]/(6*2^(2/3)) + Log[1 + (2^(1/3)*x)/(1 - x^3)^(1/3
)]/(3*2^(2/3))

Rule 494

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> With[{k = Denominato
r[p]}, Dist[(k*a^(p + (m + 1)/n))/n, Subst[Int[(x^((k*(m + 1))/n - 1)*(c - (b*c - a*d)*x^k)^q)/(1 - b*x^k)^(p
+ q + (m + 1)/n + 1), x], x, x^(n/k)/(a + b*x^n)^(1/k)], x]] /; FreeQ[{a, b, c, d}, x] && IGtQ[n, 0] && Ration
alQ[m, p] && IntegersQ[p + (m + 1)/n, q] && LtQ[-1, p, 0]

Rule 481

Int[((e_.)*(x_))^(m_.)/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), x_Symbol] :> -Dist[(a*e^n)/(b*c -
a*d), Int[(e*x)^(m - n)/(a + b*x^n), x], x] + Dist[(c*e^n)/(b*c - a*d), Int[(e*x)^(m - n)/(c + d*x^n), x], x]
/; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LeQ[n, m, 2*n - 1]

Rule 292

Int[(x_)/((a_) + (b_.)*(x_)^3), x_Symbol] :> -Dist[(3*Rt[a, 3]*Rt[b, 3])^(-1), Int[1/(Rt[a, 3] + Rt[b, 3]*x),
x], x] + Dist[1/(3*Rt[a, 3]*Rt[b, 3]), Int[(Rt[a, 3] + Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3
]^2*x^2), x], x] /; FreeQ[{a, b}, x]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rubi steps

\begin{align*} \int \frac{x^4}{\left (1-x^3\right )^{2/3} \left (1+x^3\right )} \, dx &=\operatorname{Subst}\left (\int \frac{x^4}{\left (1+x^3\right ) \left (1+2 x^3\right )} \, dx,x,\frac{x}{\sqrt [3]{1-x^3}}\right )\\ &=\operatorname{Subst}\left (\int \frac{x}{1+x^3} \, dx,x,\frac{x}{\sqrt [3]{1-x^3}}\right )-\operatorname{Subst}\left (\int \frac{x}{1+2 x^3} \, dx,x,\frac{x}{\sqrt [3]{1-x^3}}\right )\\ &=-\left (\frac{1}{3} \operatorname{Subst}\left (\int \frac{1}{1+x} \, dx,x,\frac{x}{\sqrt [3]{1-x^3}}\right )\right )+\frac{1}{3} \operatorname{Subst}\left (\int \frac{1+x}{1-x+x^2} \, dx,x,\frac{x}{\sqrt [3]{1-x^3}}\right )+\frac{\operatorname{Subst}\left (\int \frac{1}{1+\sqrt [3]{2} x} \, dx,x,\frac{x}{\sqrt [3]{1-x^3}}\right )}{3 \sqrt [3]{2}}-\frac{\operatorname{Subst}\left (\int \frac{1+\sqrt [3]{2} x}{1-\sqrt [3]{2} x+2^{2/3} x^2} \, dx,x,\frac{x}{\sqrt [3]{1-x^3}}\right )}{3 \sqrt [3]{2}}\\ &=-\frac{1}{3} \log \left (1+\frac{x}{\sqrt [3]{1-x^3}}\right )+\frac{\log \left (1+\frac{\sqrt [3]{2} x}{\sqrt [3]{1-x^3}}\right )}{3\ 2^{2/3}}+\frac{1}{6} \operatorname{Subst}\left (\int \frac{-1+2 x}{1-x+x^2} \, dx,x,\frac{x}{\sqrt [3]{1-x^3}}\right )+\frac{1}{2} \operatorname{Subst}\left (\int \frac{1}{1-x+x^2} \, dx,x,\frac{x}{\sqrt [3]{1-x^3}}\right )-\frac{\operatorname{Subst}\left (\int \frac{-\sqrt [3]{2}+2\ 2^{2/3} x}{1-\sqrt [3]{2} x+2^{2/3} x^2} \, dx,x,\frac{x}{\sqrt [3]{1-x^3}}\right )}{6\ 2^{2/3}}-\frac{\operatorname{Subst}\left (\int \frac{1}{1-\sqrt [3]{2} x+2^{2/3} x^2} \, dx,x,\frac{x}{\sqrt [3]{1-x^3}}\right )}{2 \sqrt [3]{2}}\\ &=\frac{1}{6} \log \left (1+\frac{x^2}{\left (1-x^3\right )^{2/3}}-\frac{x}{\sqrt [3]{1-x^3}}\right )-\frac{1}{3} \log \left (1+\frac{x}{\sqrt [3]{1-x^3}}\right )-\frac{\log \left (1+\frac{2^{2/3} x^2}{\left (1-x^3\right )^{2/3}}-\frac{\sqrt [3]{2} x}{\sqrt [3]{1-x^3}}\right )}{6\ 2^{2/3}}+\frac{\log \left (1+\frac{\sqrt [3]{2} x}{\sqrt [3]{1-x^3}}\right )}{3\ 2^{2/3}}-\frac{\operatorname{Subst}\left (\int \frac{1}{-3-x^2} \, dx,x,1-\frac{2 \sqrt [3]{2} x}{\sqrt [3]{1-x^3}}\right )}{2^{2/3}}-\operatorname{Subst}\left (\int \frac{1}{-3-x^2} \, dx,x,-1+\frac{2 x}{\sqrt [3]{1-x^3}}\right )\\ &=\frac{\tan ^{-1}\left (\frac{-1+\frac{2 x}{\sqrt [3]{1-x^3}}}{\sqrt{3}}\right )}{\sqrt{3}}+\frac{\tan ^{-1}\left (\frac{1-\frac{2 \sqrt [3]{2} x}{\sqrt [3]{1-x^3}}}{\sqrt{3}}\right )}{2^{2/3} \sqrt{3}}+\frac{1}{6} \log \left (1+\frac{x^2}{\left (1-x^3\right )^{2/3}}-\frac{x}{\sqrt [3]{1-x^3}}\right )-\frac{1}{3} \log \left (1+\frac{x}{\sqrt [3]{1-x^3}}\right )-\frac{\log \left (1+\frac{2^{2/3} x^2}{\left (1-x^3\right )^{2/3}}-\frac{\sqrt [3]{2} x}{\sqrt [3]{1-x^3}}\right )}{6\ 2^{2/3}}+\frac{\log \left (1+\frac{\sqrt [3]{2} x}{\sqrt [3]{1-x^3}}\right )}{3\ 2^{2/3}}\\ \end{align*}

Mathematica [C]  time = 0.0338653, size = 26, normalized size = 0.19 \[ \frac{1}{5} x^5 F_1\left (\frac{5}{3};\frac{2}{3},1;\frac{8}{3};x^3,-x^3\right ) \]

Warning: Unable to verify antiderivative.

[In]

Integrate[x^4/((1 - x^3)^(2/3)*(1 + x^3)),x]

[Out]

(x^5*AppellF1[5/3, 2/3, 1, 8/3, x^3, -x^3])/5

________________________________________________________________________________________

Maple [F]  time = 0.037, size = 0, normalized size = 0. \begin{align*} \int{\frac{{x}^{4}}{{x}^{3}+1} \left ( -{x}^{3}+1 \right ) ^{-{\frac{2}{3}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4/(-x^3+1)^(2/3)/(x^3+1),x)

[Out]

int(x^4/(-x^3+1)^(2/3)/(x^3+1),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{4}}{{\left (x^{3} + 1\right )}{\left (-x^{3} + 1\right )}^{\frac{2}{3}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(-x^3+1)^(2/3)/(x^3+1),x, algorithm="maxima")

[Out]

integrate(x^4/((x^3 + 1)*(-x^3 + 1)^(2/3)), x)

________________________________________________________________________________________

Fricas [A]  time = 1.54412, size = 555, normalized size = 3.99 \begin{align*} \frac{1}{6} \cdot 4^{\frac{1}{6}} \sqrt{3} \arctan \left (-\frac{4^{\frac{1}{6}}{\left (4^{\frac{1}{3}} \sqrt{3} x - 4^{\frac{2}{3}} \sqrt{3}{\left (-x^{3} + 1\right )}^{\frac{1}{3}}\right )}}{6 \, x}\right ) + \frac{1}{12} \cdot 4^{\frac{2}{3}} \log \left (\frac{4^{\frac{2}{3}} x + 2 \,{\left (-x^{3} + 1\right )}^{\frac{1}{3}}}{x}\right ) - \frac{1}{24} \cdot 4^{\frac{2}{3}} \log \left (\frac{2 \cdot 4^{\frac{1}{3}} x^{2} - 4^{\frac{2}{3}}{\left (-x^{3} + 1\right )}^{\frac{1}{3}} x + 2 \,{\left (-x^{3} + 1\right )}^{\frac{2}{3}}}{x^{2}}\right ) - \frac{1}{3} \, \sqrt{3} \arctan \left (-\frac{\sqrt{3} x - 2 \, \sqrt{3}{\left (-x^{3} + 1\right )}^{\frac{1}{3}}}{3 \, x}\right ) - \frac{1}{3} \, \log \left (\frac{x +{\left (-x^{3} + 1\right )}^{\frac{1}{3}}}{x}\right ) + \frac{1}{6} \, \log \left (\frac{x^{2} -{\left (-x^{3} + 1\right )}^{\frac{1}{3}} x +{\left (-x^{3} + 1\right )}^{\frac{2}{3}}}{x^{2}}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(-x^3+1)^(2/3)/(x^3+1),x, algorithm="fricas")

[Out]

1/6*4^(1/6)*sqrt(3)*arctan(-1/6*4^(1/6)*(4^(1/3)*sqrt(3)*x - 4^(2/3)*sqrt(3)*(-x^3 + 1)^(1/3))/x) + 1/12*4^(2/
3)*log((4^(2/3)*x + 2*(-x^3 + 1)^(1/3))/x) - 1/24*4^(2/3)*log((2*4^(1/3)*x^2 - 4^(2/3)*(-x^3 + 1)^(1/3)*x + 2*
(-x^3 + 1)^(2/3))/x^2) - 1/3*sqrt(3)*arctan(-1/3*(sqrt(3)*x - 2*sqrt(3)*(-x^3 + 1)^(1/3))/x) - 1/3*log((x + (-
x^3 + 1)^(1/3))/x) + 1/6*log((x^2 - (-x^3 + 1)^(1/3)*x + (-x^3 + 1)^(2/3))/x^2)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{4}}{\left (- \left (x - 1\right ) \left (x^{2} + x + 1\right )\right )^{\frac{2}{3}} \left (x + 1\right ) \left (x^{2} - x + 1\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**4/(-x**3+1)**(2/3)/(x**3+1),x)

[Out]

Integral(x**4/((-(x - 1)*(x**2 + x + 1))**(2/3)*(x + 1)*(x**2 - x + 1)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{4}}{{\left (x^{3} + 1\right )}{\left (-x^{3} + 1\right )}^{\frac{2}{3}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(-x^3+1)^(2/3)/(x^3+1),x, algorithm="giac")

[Out]

integrate(x^4/((x^3 + 1)*(-x^3 + 1)^(2/3)), x)